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Introduction

❏ Interpretable Deep Generative Models for Default Prediction

❏ Why Default Prediction?

❏ Economic Impact

❏ High data imbalance 

❏ Accuracy vs Transparency

❏ Interpretable generative models to provide justification in decision making
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Dataset - UCI Default of Credit Card Clients

Characteristics: 
❏ 30k rows, 22.1% default ratio
❏ 9 Categorical features: Gender, Education, Marriage, Repayment Status
❏ 14 Numerical features: Monthly bill & payment amount in the past 6 months, LIMIT_BAL, AGE
❏ Target:  whether default next month
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Dataset - EDA - Distribution Plots 
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Dataset - EDA - PCA Analysis
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Related Work - ML Methods on UCI Credit Card Dataset

● Limited ability to distinguish default cases
● ROC-AUC remains low

    How about Deep Learning methods?
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Related Work - DL Methods

Most DL methods use backbones like MLP, GNN or ensemble with trees, and focus on Classification
Drawbacks: Typically lacks data generation ability and struggles with class imbalance

Our work: deep generative models for tabular data
 → Handle imbalance, synthesize data, ensure interpretability + classification
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Methodology - Workflow

❏ Feature Engineering

❏ Synthetic Data Generation

❏ Model Design & Implementation 

❏ DGM: VAE, GAN, Diffusion Model, AR model (Transformer)

❏ Interpretability Design
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Methodology - Feature Engineering
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Methodology - Synthetic Data Generation

❏ Class Imbalance Mitigation

❏ Real-world credit datasets are often imbalanced, with far fewer default cases. 

❏ Data Augmentation

❏ Effectively expand the dataset size, allowing models to generalize better and reduce overfitting 

❏ Approach

❏ TVAE, CTGAN and Diffusion models
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Methodology - TVAE

❏ Categorical Features:

 One-hot encoded → embedded

❏ Continuous Features:

 Scaled to [0,1] → concatenated with categorical embeddings.

❏ Standard VAE Encoder and Decoder:

❏ Inputs encoded into a latent Gaussian distribution (μ, σ) → sampled via 

reparameterization trick.  

❏ Latent vectors decoded into synthetic tabular records using a decoder network.
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Methodology - CTGAN

❏ Generator Input:

 Random noise vector + conditional vector 

❏ Generator Output:

 Mixed-type synthetic features

❏ Discriminator Input:

 Real and synthetic data

❏ Training Objective:

 Trains via adversarial loss with conditional 

vector supervision to ensure mode coverage 

and fidelity.
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Methodology - Diffusion models

❏ Preprocessing:
Numerical columns are normalized
Categorical columns are one-hot encoded with a special [MASK] token

❏ Forward Diffusion:
Noise is added separately to each column type using learnable feature-wise schedules
Gaussian noise for numerical features, masking for categorical ones

❏ Denoising:
A Transformer and MLP based network jointly learns to denoise all features by reversing the diffusion steps
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Methodology - Diffusion models

❏ TabDiff as the baseline

❏ Added a MLP block from TabDDPM as a skip connection for the denoising network
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Methodology - TabTransformer

❏ Uses self-attention to capture contextual 
relationships between categorical features.

Architecture

1. Categorical Features:
○ Embedded into vectors → processed by 

Transformer layers (self-attention captures 
feature interactions).

2. Continuous Features:
○ Normalized → concatenated with 

transformed categorical embeddings.
3. Prediction:

○ Combined features fed into an MLP for final 
output.
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Methodology - FT-Transformer

❏ Unifies feature processing by converting both categorical 
and numerical features into embeddings and applying 
global self-attention 

Architecture

1. Feature Tokenizer:
○ Categorical: Embedded into vectors.
○ Continuous: Linearly projected into embeddings 

(like NLP tokens).
2. Transformer Layers:

○ Processes all tokens with multi-head 
self-attention to model interactions.

○ Adds a [CLS] token to aggregate global 
information.

3. Prediction:
○ [CLS] token output → MLP for final prediction 
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Methodology - Introducing TabFT-Transformer

❏ TabFT-Transformer - Combines key ideas from TabTransformer (categorical feature attention) and 
FT-Transformer (unified token processing) into a hybrid architecture

   Key Innovations

1. Feature Embedding Strategy
○ Categorical Features:

■ Uses nn.Embedding layers (like TabTransformer) for categorical features.
○ Numerical Features:

■ Projects numerical features into embeddings via nn.Linear layers (like FT-Transformer), treating 
them as tokens for unified processing.

2. CLS Token Integration (from FT-Transformer)
○ Adds a learnable [CLS] token to aggregate global feature interactions.

3. Transformer Processing
○ All embedded tokens (categorical + numerical + CLS) pass through multi-head self-attention layers, 

enabling cross-feature interaction modeling for both data types.
4. Output Head

○ Uses the [CLS] token to feed into an MLP for prediction
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Methodology - Introducing TabFT-Transformer

❏ TabFT-Transformer - Combines key ideas from TabTransformer (categorical feature attention) and 
FT-Transformer (unified token processing) into a hybrid architecture

   Key Benefits

1. Comprehensive Interactions: Captures numerical-categorical dependencies (unlike TabTransformer).

2. Stability: LayerNorm on numerical features prevents dominance in attention.

3. Efficiency: CLS token aggregates global patterns better than concatenation.

4. Flexibility: Inherits categorical semantics (TabTransformer) + unified attention (FT-Transformer).
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Methodology - Introducing TabFT-Transformer

❏ TabFT-Transformer - Combines key ideas from TabTransformer (categorical feature attention) and 
FT-Transformer (unified token processing) into a hybrid architecture

 



21
21
21

21

Methodology - Interpretability Design

❏ Attention-based Feature Importance
❏ Uses the model’s attention weights (from the CLS token) to quantify how much the 

model "focuses" on each feature.

❏ Perturbation-based Feature Importance
❏ Measures the impact of perturbing each feature on the model’s predictions.
❏ For each feature, replace its value with the mean of that feature across the batch.
❏ Measure the absolute difference between baseline and perturbed predictions.

❏ SHAP (SHapley Additive exPlanation) Analysis
❏ Uses fair allocation results from cooperative game theory to allocate credit for a 

model’s output among the input features
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Experimental Results - Synthetic Data

❏ Evaluation Metrics - Column Shapes & Column Pair Trends

❏ Column Shapes evaluates the univariate distribution similarity of each 

column between real and synthetic data.

❏ Column Pair Trends assesses whether the pairwise relationships between 

columns are preserved.
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Experimental Results - Synthetic Data

      TVAE                                                 CTGAN                                                 Diffusion

TSNE Distribution of Non-Default label
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Experimental Results - Synthetic Data

    TVAE                                                 CTGAN                                                 Diffusion

TSNE Distribution of Default label
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Experimental Results - Synthetic Data

           TVAE                                                       CTGAN                                                       Diffusion

Distribution of LIMIT_BAL and Marriage feature
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Experimental Results - Classification

❏ Baseline: Logistic regression & XGBoost

❏ TabFT-Transformer slightly outperforms both Tab-Transformer & FT-Transformer

❏ TabFT-Transformer matches XGBoost in terms ROC-AUC, slightly lower F1-Score due to 

lower Precision despite higher Recall
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Experimental Results - Classification with Synthetic Data

❏ Synthetic data generated by diffusion model, combined with only training dataset to avoid leakage

❏ Synthetic data 30k, 150k, 300k merely increase training data size

❏ Slight improvement as synthetic data size increases 
❏ Synthetic data Default-only 10k makes training dataset class-label balanced

❏ Only increased Precision while the other metrics decreased
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Experimental Results - Interpretability 

TSNE Visualization of TabFT-Transformer Embedding (2D)

      Default vs Non-Default                                                            Correct vs Incorrect Classification
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Experimental Results - Interpretability 

TSNE Visualization of TabFT-Transformer Embedding (3D)
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Experimental Results - Interpretability 

TabFT-Transformer Attention Weights Visualization
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Experimental Results - Interpretability 

Feature Importance (Attention vs Perturbation)
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Experimental Results - Interpretability 
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Experimental Results - Interpretability 
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Experimental Results - Interpretability 

SHAP Values Waterfall 
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Experimental Results - Interpretability 

SHAP Values Waterfall 
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Experimental Results - Interpretability 

SHAP Values Decision
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Experimental Results - Interpretability 
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Experimental Results - Interpretability 
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Experimental Results - Interpretability 
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Experimental Results - Interpretability 

Partial Dependence Plot
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Future Plan 

❏ More Advanced or Hybrid Generative Modeling

❏ Explore hybrid architectures (e.g., combining TabDiff + GAN)

❏ Extend evaluation metrics

❏ Go beyond AUC-ROC and F1-score by analyzing fairness, robustness, and calibration 

of classifiers trained on synthetic data.

❏ Apply more real-world datasets

❏ Explore integration of synthetic data into actual credit scoring systems or model 

validation workflows.
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Future Plan 

❏ Interpretable Learning Techniques

❏ Develop attention sparsity constraints for more focused explanations

❏ Use causal feature attribution to reduce spurious correlations

❏ Visualize feature interaction graphs from attention matrices

❏ Systematic Ablation Studies

❏ Quantify impact of each module: generation, classifier, interpretability

❏ Evaluate synthetic-vs-real training dynamics over multiple seeds
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