Carnegie Mellon University

18789 Project Presentation

Interpretable Deep Generative Models for Default Prediction

Li Cao (licao), Jiachun Xu (jiachunx), Likeer Xu (xlikeer) Apr 23, 2025

Table of Contents

- ☐ Introduction / Motivation
- Related Work
- Methods
- Experimental results
- ☐ Future Plan
- ☐ References

Introduction

- ☐ Interpretable Deep Generative Models for Default Prediction
- Why Default Prediction?
 - **■** Economic Impact
 - High data imbalance
 - Accuracy vs Transparency
 - Interpretable generative models to provide justification in decision making

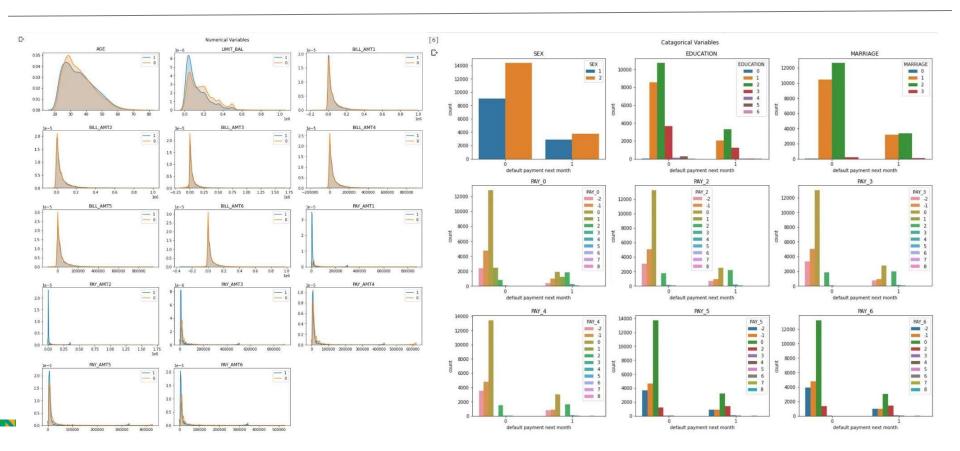
Dataset - UCI Default of Credit Card Clients

Characteristics:

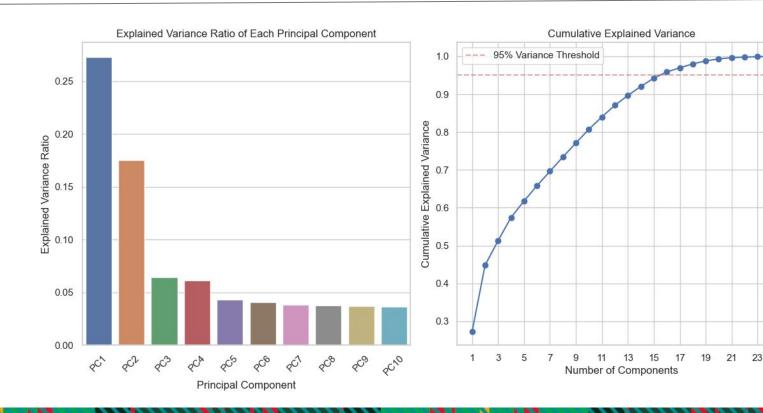
- □ 30k rows, 22.1% default ratio
- 9 Categorical features: Gender, Education, Marriage, Repayment Status
- ☐ 14 Numerical features: Monthly bill & payment amount in the past 6 months, LIMIT_BAL, AGE
- ☐ **Target:** whether default next month

Variable	Column Name	Description	Value / Unit Explanation
X1	LIMIT_BAL	Amount of given credit	NT dollars
X2	SEX	Gender	1 = Male; 2 = Female
X3	EDUCATION	Education level	1 = Graduate; 2 = University; 3 = High school; 4 = Others
X4	MARRIAGE	Marital status	1 = Married; 2 = Single; 3 = Others
X5	AGE	Age	Years
X6-X11	PAY_O-PAY_6	Repayment status	0 = On-time; 1-9 = Months delayed
X12-X17	BILL_AMT1- BILL_AMT6	Monthly bill statements	NT dollars
X18-X23	PAY_AMT1- PAY_AMT6	Previous payments	NT dollars

Dataset - EDA - Distribution Plots



Dataset - EDA - PCA Analysis



Related Work - ML Methods on UCI Credit Card Dataset

Summary	of Data	Mining	Techniques	in	Credit	Scoring
---------	---------	--------	------------	----	--------	---------

Author(s)	Method	Highlight
Rosenberg & Gleit (1994)	DA, Trees, Markov Chains	Static/dynamic models for credit decisions
Hand & Henley (1997)	Statistical classification	Defined "credit scoring" and its significance
Paolo (2001)	Bayesian + MCMC	Flexible modeling of complex data
Lee et al. (2002)	NN + Discriminant	Hybrid model with better speed and accuracy
Baesens et al. (2003)	SVM, NN, LR, LDA	Both complex and simple models perform well

Method	ROC-AUC
K-nearest neighbor	0.45
Logistic regression	0.44
Discriminant analysis	0.43
Classification trees	0.536

- Limited ability to distinguish default cases
- ROC-AUC remains low

How about Deep Learning methods?

Related Work - DL Methods

Method	Backbone / Key Idea
DeepFM	MLP + Factorization Machine
NODE	Differentiable Decision Trees
NAM	MLP (Feature-wise Subnetworks)
TabNet	MLP + Attention-based Feature Masking
xDeepFM	CIN + FM (Field Interaction)
Boost-GNN	GNN on GBDT Trees
DNN2LR	MLP + Logistic Regression

Most DL methods use backbones like **MLP**, **GNN** or **ensemble** with trees, and focus on **Classification** Drawbacks: Typically lacks **data generation ability** and struggles with **class imbalance**

Our work: **deep generative models** for tabular data

→ Handle imbalance, synthesize data, ensure interpretability + classification

Methodology - Workflow

- Feature Engineering
- Synthetic Data Generation
- Model Design & Implementation
 - ☐ DGM: VAE, GAN, Diffusion Model, AR model (Transformer)
- Interpretability Design

Methodology - Feature Engineering

1. Payment-to-Bill Ratios (6 Features)

• Formula: For each month i = 1, 2, ..., 6:

$$PAY_TO_BILL_i = \frac{PAY_AMT_i}{BILL_AMT_i + \epsilon} \quad (\epsilon = 10^{-10})$$

• Purpose: Measures how much of the bill was actually paid each month.

2. Average Bill/Payment Amounts (2 Features)

• Formulas:

$$\text{AVG_BILL_AMT} = \frac{1}{6} \sum_{i=1}^{6} \text{BILL_AMT}_i$$

$$\text{AVG_PAY_AMT} = \frac{1}{6} \sum_{i=1}^{6} \text{PAY_AMT}_i$$

• Purpose: Captures average historical bill and payment amounts.

3. Payment Delay Features (2 Features)

• Formulas:

$$\label{eq:pay_deltay_sum} PAY_DELAY_SUM = \sum_{col \in \{PAY_0,\ PAY_2,\ \dots,\ PAY_6\}} col$$

$$PAY_DELAY_TREND = PAY_0 - PAY_6$$

- Purpose:
 - PAY_DELAY_SUM: Total payment delays across 6 months
 - PAY_DELAY_TREND: Trend in delays (recent vs. older behavior)

4. Utilization Rates (6 Features)

• Formula: For each month i = 1, 2, ..., 6:

$$\text{UTILIZATION}_i = \frac{\text{BILL.AMT}_i}{\text{LIMIT.BAL} + \epsilon} \quad (\epsilon = 10^{-10})$$

- Purpose: Ratio of billed amount to total credit limit.
- 5. Average Utilization (1 Feature)
 - Formula:

$$\text{AVG_UTILIZATION} = \frac{1}{6} \sum_{i=1}^{6} \text{UTILIZATION}_i$$

• Purpose: Average credit utilization over 6 months.

17 Total New Features

$$6 (PAY_TO_BILL) + 2 (AVG) + 2 (PAY_DELAY) + 6 (UTILIZATION) + 1 (AVG_UTILIZATION)$$

Methodology - Synthetic Data Generation

- Class Imbalance Mitigation
 - Real-world credit datasets are often imbalanced, with far fewer default cases.
- Data Augmentation
 - $oldsymbol{\Box}$ Effectively expand the dataset size, allowing models to generalize better and reduce overfitting
- Approach
 - TVAE, CTGAN and Diffusion models

Methodology - TVAE

Categorical Features:

One-hot encoded → embedded

Continuous Features:

Scaled to $[0,1] \rightarrow$ concatenated with categorical embeddings.

- Standard VAE Encoder and Decoder:
 - Inputs encoded into a latent Gaussian distribution (μ , σ) \rightarrow sampled via reparameterization trick.
 - ☐ Latent vectors decoded into synthetic tabular records using a decoder network.

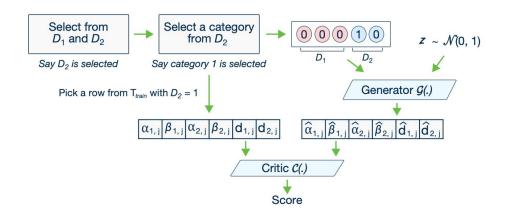
Methodology - CTGAN

Generator Input:

Random noise vector + conditional vector

- Generator Output:
 Mixed-type synthetic features
- Discriminator Input:Real and synthetic data
- Training Objective:

Trains via adversarial loss with conditional vector supervision to ensure mode coverage and fidelity.



Methodology - Diffusion models

Preprocessing:

Numerical columns are normalized Categorical columns are one-hot encoded with a special [MASK] token

Forward Diffusion:

Noise is added separately to each column type using learnable feature-wise schedules Gaussian noise for numerical features, masking for categorical ones

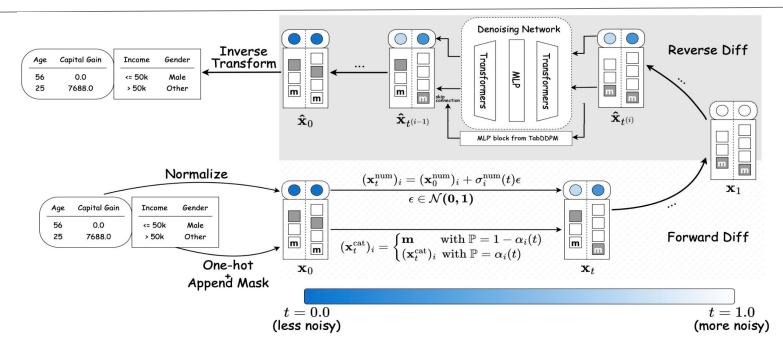
Denoising:

A Transformer and MLP based network jointly learns to denoise all features by reversing the diffusion steps

Budget (M\$)	Duration (min)	IMBD Rating	Language	Genre	Award
520.2	4951	9.0	[MASK]	[MASK]	[MASK]
542.2	2681	14.1	[MASK]	[MASK]	[MASK]
-904.0	-2412	-9.3	[MASK]	[MASK]	[MASK]

$$\begin{array}{c} t = 1.0 \\ \text{(more noisy)} \end{array} \hspace{1cm} t = 0.0 \\ \text{(less noisy)} \end{array}$$

Methodology - Diffusion models



- ☐ TabDiff as the baseline
- Added a MLP block from TabDDPM as a skip connection for the denoising network

Methodology - TabTransformer

Uses **self-attention** to capture contextual relationships between categorical features.

Architecture

1. Categorical Features:

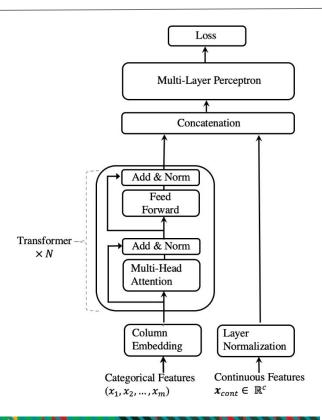
 Embedded into vectors → processed by Transformer layers (self-attention captures feature interactions).

2. **Continuous Features**:

 Normalized → concatenated with transformed categorical embeddings.

3. **Prediction**:

 Combined features fed into an MLP for final output.



Methodology - FT-Transformer

Unifies feature processing by converting both categorical and numerical features into embeddings and applying global self-attention

Architecture

1. Feature Tokenizer:

- Categorical: Embedded into vectors.
- Continuous: Linearly projected into embeddings (like NLP tokens).

2. **Transformer Layers**:

- Processes all tokens with multi-head self-attention to model interactions.
- Adds a [CLS] token to aggregate global information.

3. **Prediction**:

○ [CLS] token output → MLP for final prediction

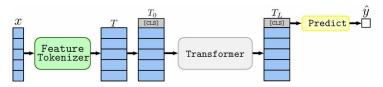


Figure 1: The FT-Transformer architecture. Firstly, Feature Tokenizer transforms features to embeddings. The embeddings are then processed by the Transformer module and the final representation of the [CLS] token is used for prediction.

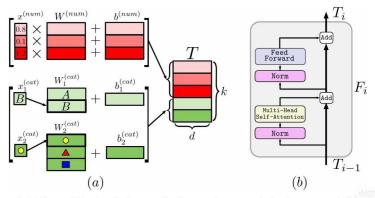


Figure 2: (a) Feature Tokenizer; in the example, there are three numerical and two categorical features; (b) One Transformer layer.

Mellon

Methodology - Introducing TabFT-Transformer

☐ TabFT-Transformer - Combines key ideas from TabTransformer (categorical feature attention) and FT-Transformer (unified token processing) into a hybrid architecture

Key Innovations

- 1. Feature Embedding Strategy
 - Categorical Features:
 - Uses nn.Embedding layers (like TabTransformer) for categorical features.
 - O Numerical Features:
 - Projects numerical features into embeddings via nn.Linear layers (like FT-Transformer), treating them as tokens for unified processing.
- 2. **CLS Token Integration** (from FT-Transformer)
 - Adds a learnable [CLS] token to aggregate global feature interactions.
- Transformer Processing
 - All embedded tokens (categorical + numerical + CLS) pass through multi-head self-attention layers, enabling cross-feature interaction modeling for both data types.
- 4. Output Head
 - Uses the [CLS] token to feed into an MLP for prediction

Methodology - Introducing TabFT-Transformer

□ **TabFT-Transformer** - Combines key ideas from **TabTransformer** (categorical feature attention) and **FT-Transformer** (unified token processing) into a hybrid architecture

Key Benefits

- 1. **Comprehensive Interactions**: Captures **numerical-categorical** dependencies (unlike TabTransformer).
- 2. **Stability**: LayerNorm on numerical features prevents dominance in attention.
- 3. **Efficiency**: CLS token aggregates global patterns better than concatenation.
- 4. **Flexibility**: Inherits categorical semantics (TabTransformer) + unified attention (FT-Transformer).

Methodology - Introducing TabFT-Transformer

□ **TabFT-Transformer** - Combines key ideas from **TabTransformer** (categorical feature attention) and **FT-Transformer** (unified token processing) into a hybrid architecture

TabTransformer	FT-Transformer	TabFT-Transformer
Embeddings	Tokenized	Embeddings
MLP/raw	Tokenized	LayerNorm + Tokenized
Categorical-only	Global	Global
Concatenation	Pooling/CLS token	CLS token
	Embeddings MLP/raw Categorical-only	Embeddings Tokenized MLP/raw Tokenized Categorical-only Global

Methodology - Interpretability Design

Attention-based Feature Importance

☐ Uses the model's attention weights (from the CLS token) to quantify how much the model "focuses" on each feature.

Perturbation-based Feature Importance

- Measures the impact of perturbing each feature on the model's predictions.
- For each feature, replace its value with the **mean** of that feature across the batch.
- ☐ Measure the absolute difference between baseline and perturbed predictions.

■ SHAP (SHapley Additive exPlanation) Analysis

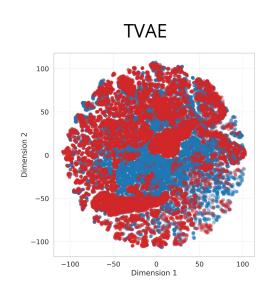
☐ Uses fair allocation results from cooperative game theory to allocate credit for a model's output among the input features

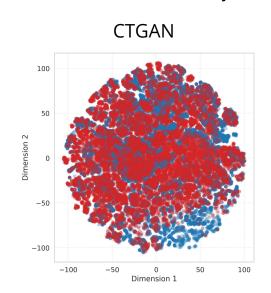
Evaluation Metrics - Column Shapes & Column Pair Trends

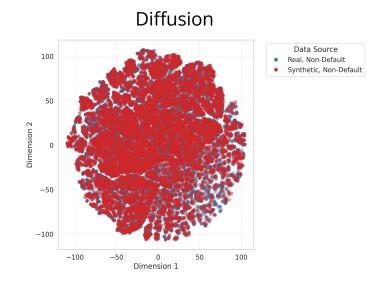
- ☐ **Column Shapes** evaluates the univariate distribution similarity of each column between real and synthetic data.
- □ **Column Pair Trends** assesses whether the pairwise relationships between columns are preserved.

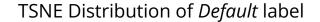
Method	Column Shapes $(\%)$	Column Pair Trends(%)	${\bf Overall~Score}(\%)$
SMOTE	90.82	92.5	91.66
TVAE	90.40	84.73	87.56
CTGAN	89.12	85.27	87.19
Diffusion	98.58	98.36	98.47

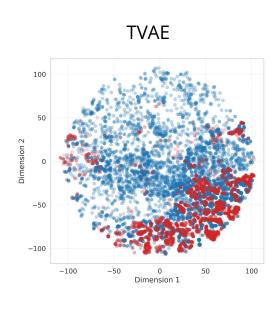
TSNE Distribution of Non-Default label

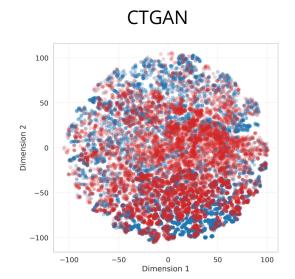


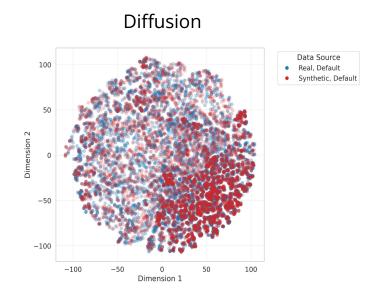




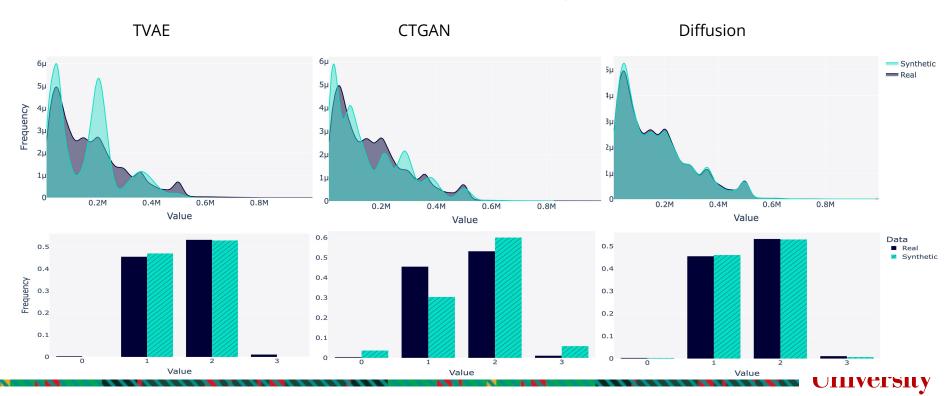








Distribution of LIMIT_BAL and Marriage feature



Experimental Results - Classification

- ☐ Baseline: Logistic regression & XGBoost
- TabFT-Transformer slightly outperforms both Tab-Transformer & FT-Transformer
- ☐ TabFT-Transformer matches XGBoost in terms ROC-AUC, slightly lower F1-Score due to lower Precision despite higher Recall

Model	ROC-AUC	F1	Precision	Recall	
Logistic Regression	0.716	0.486	0.447	0.632	
XGBoost	0.778	0.533	0.475	0.609	
AE+MLP	0.743	0.459	0.585	0.373	
TabTransformer	0.773	0.522	0.475	0.586	
FT-Transformer	0.775	0.521	0.448	0.620	
TabFT-Transformer	0.778	0.524	0.454	0.620	

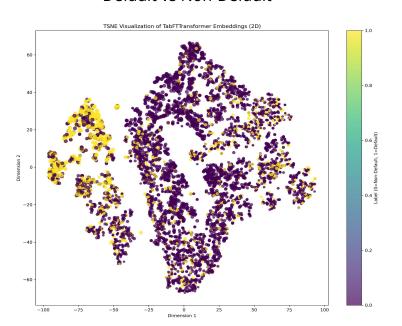
Experimental Results - Classification with Synthetic Data

- Synthetic data generated by diffusion model, combined with only training dataset to avoid leakage
- Synthetic data **30k**, **150k**, **300k** merely increase training data size
 - □ Slight improvement as synthetic data size increases
- □ Synthetic data **Default-only 10k** makes training dataset class-label balanced
 - Only increased Precision while the other metrics decreased

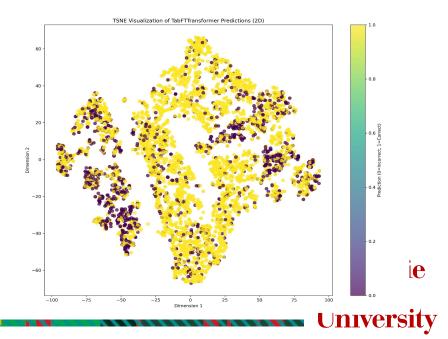
Dataset	ROC-AUC	$\mathbf{F1}$	Precision	Recall
Original-only	0.778	0.524	0.454	0.620
Original + Synthetic 30k	0.779	0.526	0.465	0.606
$Original + Synthetic \ 150k$	0.780	0.528	0.444	0.650
$Original + Synthetic \ 300k$	0.781	0.531	0.467	0.614
Original + Synthetic Default-only 10k	0.766	0.528	0.504	0.555

TSNE Visualization of TabFT-Transformer Embedding (2D)

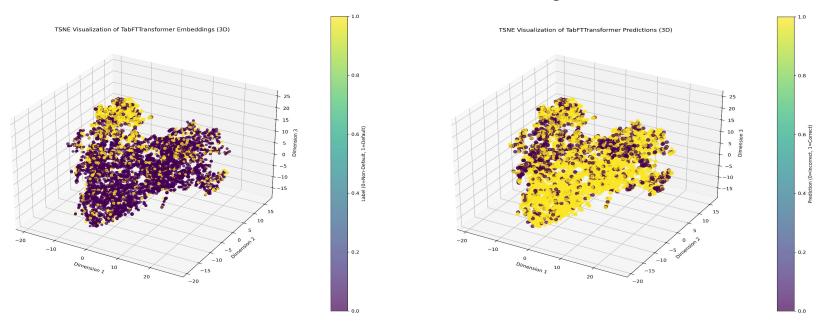
Default vs Non-Default



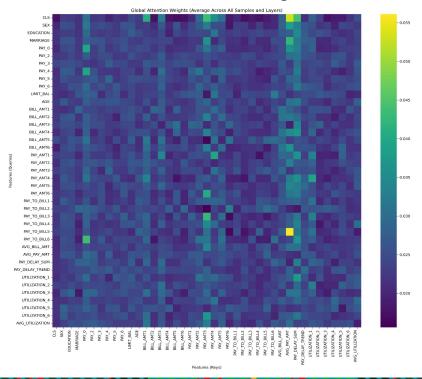
Correct vs Incorrect Classification



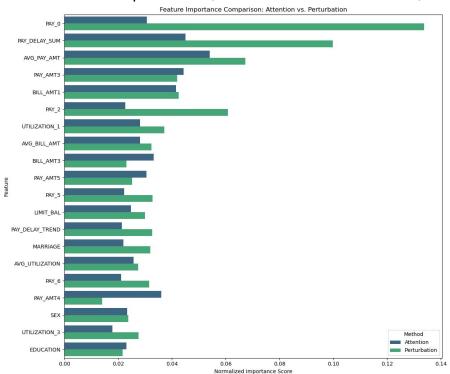
TSNE Visualization of TabFT-Transformer Embedding (3D)

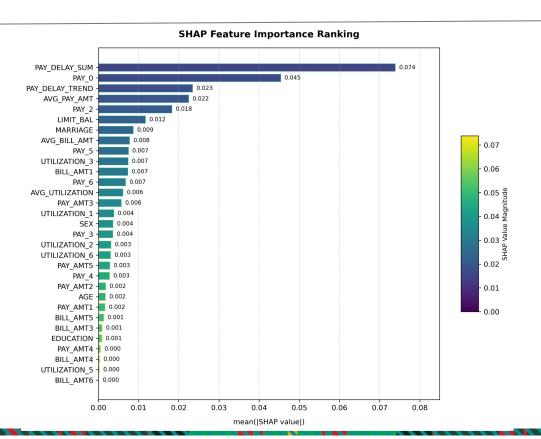


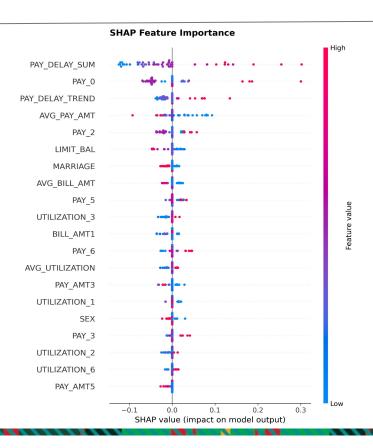
TabFT-Transformer Attention Weights Visualization

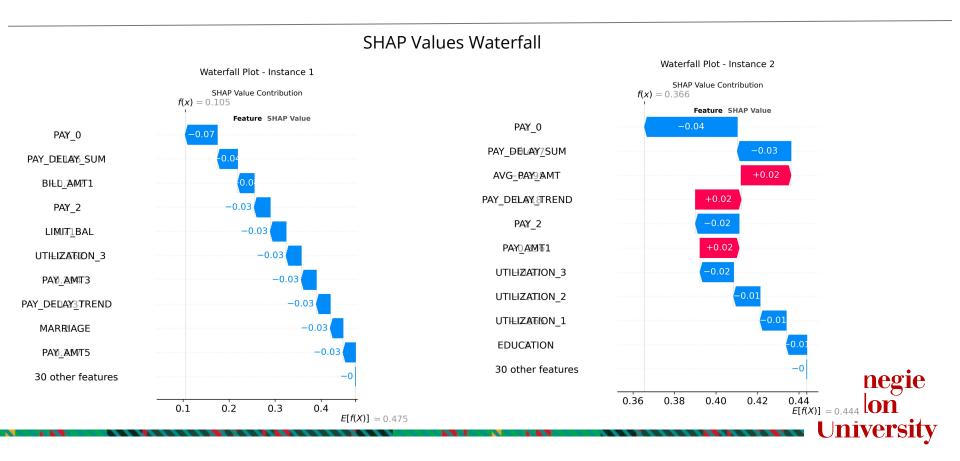


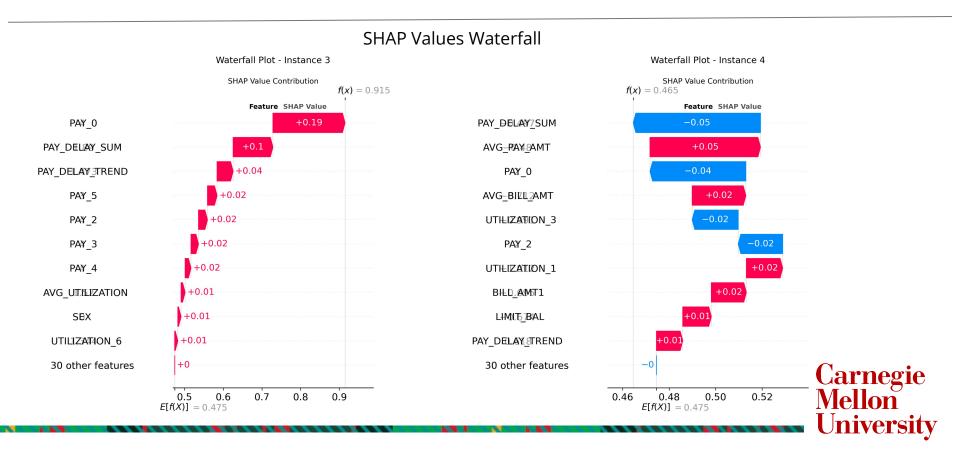
Feature Importance (Attention vs Perturbation)



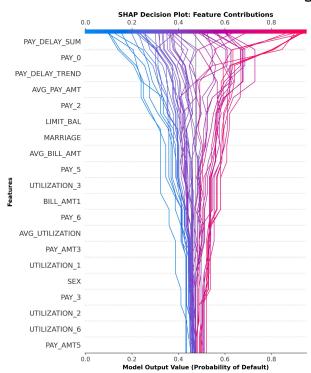


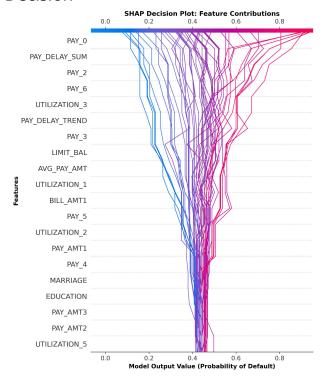






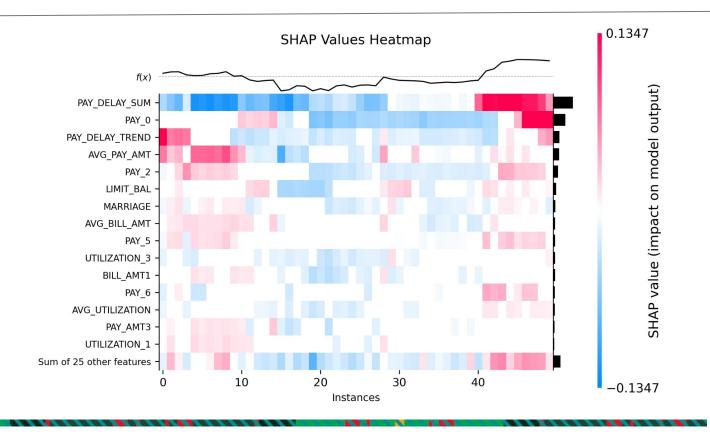
SHAP Values Decision

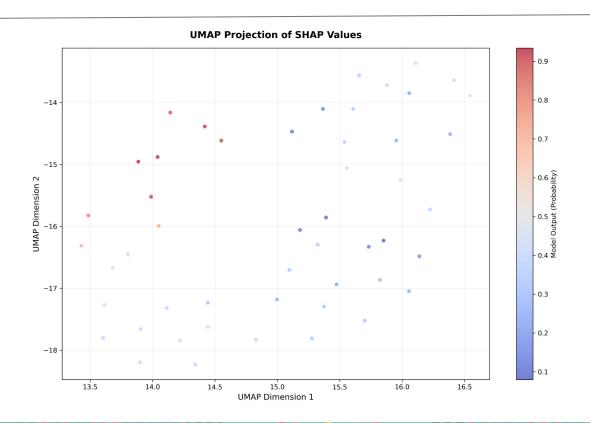


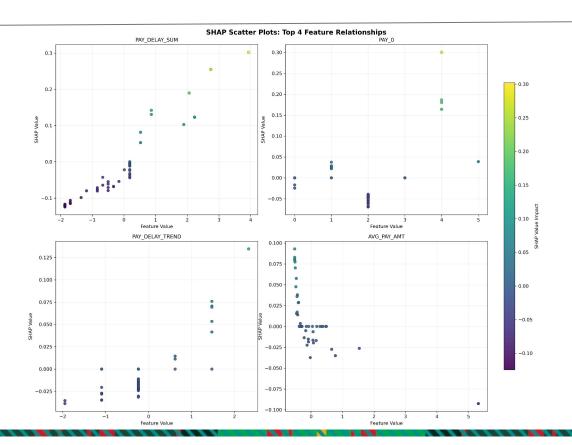


Carnegie Mellon

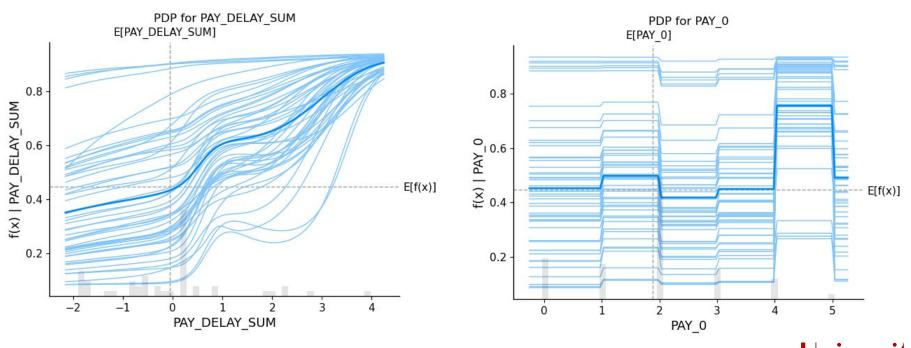
University







Partial Dependence Plot



Future Plan

- More Advanced or Hybrid Generative Modeling
 - Explore hybrid architectures (e.g., combining TabDiff + GAN)
- Extend evaluation metrics
 - Go beyond AUC-ROC and F1-score by analyzing fairness, robustness, and calibration of classifiers trained on synthetic data.
- Apply more real-world datasets
 - Explore integration of synthetic data into actual credit scoring systems or model validation workflows.

Future Plan

- ☐ Interpretable Learning Techniques
 - ☐ Develop attention sparsity constraints for more focused explanations
 - Use causal feature attribution to reduce spurious correlations
 - ☐ Visualize feature interaction graphs from attention matrices
- Systematic Ablation Studies
 - Quantify impact of each module: generation, classifier, interpretability
 - Evaluate synthetic-vs-real training dynamics over multiple seeds

References

- Yeh, I. (2009). Default of Credit Card Clients [Dataset]. UCI Machine Learning Repository. doi.org/10.24432/C55S3H
- Shriyank Somvanshi, Subasish Das, Syed Aaqib Javed, Gian Antariksa, Ahmed Hossain: "A Survey on Deep Tabular Learning", 2024; http://arxiv.org/abs/2410.12034 arXiv:2410.12034.
- T. M. Alam et al., "An Investigation of Credit Card Default Prediction in the Imbalanced Datasets," in IEEE Access, vol. 8, pp. 201173-201198, 2020, doi: 10.1109/ACCESS.2020.3033784.
- □ Haque Ishfaq, Assaf Hoogi, Daniel Rubin: "TVAE: Triplet-Based Variational Autoencoder using Metric Learning", 2018; http://arxiv.org/abs/1802.04403 arXiv:1802.04403.
- ☐ José-Manuel Peña, Fernando Suárez, Omar Larré, Domingo Ramírez, Arturo Cifuentes: "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation", 2023; http://arxiv.org/abs/2302.02269 arXiv:2302.02269.

References

- Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, Artem Babenko: "TabDDPM: Modelling Tabular Data with Diffusion Models", 2022, Proceedings of the 40 th International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023; http://arxiv.org/abs/2209.15421 arXiv:2209.15421.
- ☐ Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, Jure Leskovec: "TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation", 2024, ICLR 2025; http://arxiv.org/abs/2410.20626 arXiv:2410.20626.
- ☐ Xin Huang, Ashish Khetan, Milan Cvitkovic, Zohar Karnin: "TabTransformer: Tabular Data Modeling Using Contextual Embeddings", 2020; http://arxiv.org/abs/2012.06678 arXiv:2012.06678.
- Huangliang Dai, Shixun Wu, Hairui Zhao, Jiajun Huang, Zizhe Jian, Yue Zhu, Haiyang Hu, Zizhong Chen: "FT-Transformer: Resilient and Reliable Transformer with End-to-End Fault Tolerant Attention", 2025; http://arxiv.org/abs/2504.02211 arXiv:2504.02211.

