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Assumptions & Limitations

Assumptions                Limitations

1. AR Model                           Slow Inference Speed

2. Quantization                     Quality Degradation

3. Linguistic Features           Error Propagation

4. Stationarity of Audio       Lack of Control

5. Dilated Convolutions       Limited Receptive Field

6. Data Availability               Multi-speaker Scalability



Autoregressive Generation – Slow Inference Speed

• Assumption: Audio samples’ probability distribution depends only on previous samples.

• Rationale: Mimics human speech generation

• Limitation: Slow inference due to sequential sampling.

• Impact: Impractical for real-time applications.

• Workaround: Parallel or non-autoregressive architectures (e.g., Parallel WaveNet) for 

faster inference.



Workaround - Parallel Wavenet

• Masked Autoregressive Flow (MAF)

Fast likelihood evaluation, slow sampling -> parallel training based on MLE.

• Invertible Autoregressive Flow (IAF)

Fast sampling, slow likelihood evaluation -> paralell real-time generation.

Figure 1: Comparison of MAF and IAF. The variable with known density is in green while the unknown 
one is in red.



Workaround - Parallel Wavenet

• Two part training with a teacher model (MAF) and student model (IAF).
• Once Teacher is trained in parallel via MLE, initialize a student model parameterized 

by IAF.

Figure 2: Overview of Probability Density Distillation



Workaround - Parallel Wavenet

• Probability density distillation: 

Student distribution is trained to minimize the KL divergence between student (s) and 

teacher (t)

D
KL

(S, t) = E
x∼s 

[log s(x) − log t(x)]

• Evaluation and optimization of the objective only requires efficient operations

• At training time:

1. Train teacher model via MLE.

2. Train student model via minimizing D
KL 

with teacher model.

• At Test-time:

         Use student model for inference / generation.



Workaround - Parallel Wavenet

• Improves inference speed by 1000x compared to the original wavenet.

• Successfully deployed in Google Assistant in 2017.

Figure 3: WaveNet launches in the Google Assistant
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Quantization – Audio Quality Degradation

• Assumption: Audio generation framed as a classification problem, discretizing raw 16-bit 

audio into 8-bits (256 values).

• Rationale: Reduces softmax output dimensions from 65,536 to 256, making training 

computationally tractable.

• Limitation: Quantization introduces approximation errors, creating high frequency 

noise and limiting the dynamic range.

• Impact: Quantization artifacts degrade audio fidelity.

• Workaround: Continuous waveform modeling. Parallel WaveNet: Replaced softmax with a 

mixture of logistics to model continuous audio signal. 
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Workaround - Continuous Waveform Modelling

• Parallel Wavenet The PDF of a Mixture of Logistics distribution defined as:

where:
K is the number of logistic components

   π
k 

is the weight of the k-th component 

    µ
k 

is the mean of the k-th logistic component

      s
k 

is the scale of the k-th component

σ(z) is the sigmoid function

Figure 4: Mixture of 3 Logistics example PDF 9



Precomputed Linguistic Features – Error Propagation

• Assumption: Relies on precomputed linguistic features (phonemes), only handles 

features to audio generation.

• Rationale: To leverage well-established linguistic feature extraction NLP tools developed over 

decades in traditional TTS System.

• Limitation: Handcrafted and inflexible features, mistakes in feature extraction (misaligned 

phonemes) directly degraded output quality.

• Impact: Limited adaptability, error propagation.

• Workaround: Models like VITS integrate text-to-spectrogram and 

spectrogram-to-waveform steps into a single end-to-end neural network.
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Workaround - Single Step End-to-End Modeling

• Wavenet only handles Spectrogram to Audio Waveform Synthesis.

• Need an end-to-end model for complete TTS system (e.g., VITS).

Figure 5: Traditional TTS System Modules 11



Stationarity of Audio - Lack of Fined-Grained Control

• Assumption: Statistical properties (e.g., mean, variance) of the audio signal remain 

consistent over time.

• Rationale: Simplifies modeling by treating audio as a stationary process.

• Limitation: Lacks fine-grained control over speed, prosody, pitch, or tone,  unless 

explicitly conditioned.

• Impact: Monotonic or unnatural-sounding speech.

• Workaround: Latent representation that captures both linguistic content and prosodic 
features (e.g., VITS).
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Workaround - Variational Autoencoder

Component Contribution to Speech Control

Variational Autoencoder Learn a low-dimensional latent space that captures 

speech attributes in a structured way

Adversarial Training Ensures that generated waveforms are 

indistinguishable from real speech

Pitch / Duration Predictor Allow for conditioning and control of intonation and 

rhythm.
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Table 1: VITS Components Enabling Speech Style Control



Dilated Convolutions - Limited Receptive Field

• Assumption: Dilated convolutions alone suffice to model both long-term and short-term 

dependencies.

• Rationale: Dilations can effectively expand the receptive field.

• Limitation: May under-represent local patterns or shorter-term interactions critical for 

naturalness.

• Impact: Loss of coherence in synthesized speech over extended durations.

• Workaround: Use attention mechanism to model both long range and short range 

dependencies (e.g., VITS).
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Workaround - Attention Module

• Capture long and short range dependencies with self-attention module within prior encoder

• Feed the context-aware text to VAE

Figure 6: Overview of the VITS model.
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Data Availability - Multi-speaker Scalability

• Assumption: Large and diverse dataset is required to model different speaker voices

• Rationale: To support multiple speakers, WaveNet uses speaker embeddings as conditional 

inputs. Each embedding must encode unique vocal traits for each speaker.

• Limitation: Needs hours of data per speaker to generate voices that doesn’t sound generic.

• Impact: The model struggles to synthesize speakers or accents with little data.

• Workaround: Zero-shot / Few-shot multi-speaker generation reduces reliance on data (e.g., 

VITS).
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Workaround - Zero-shot training

Component Contribution to Multi-Speaker Capability

Speaker Embeddings Inject speaker identity into encoder, duration 
predictor, and decoder to condition generation on 
target speaker.

Speaker Encoder Zero-shot / Few-shot synthesis by extracting speaker 

embeddings from reference audio.

Variational Inference Separates speaker identity from content for voice 

diversity.
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Table 2: VITS Components Enabling Multi-Speaker Synthesis



Summary

Wavenet Limitations Solutions Key Subsequent Models

Slow inference Speed Parallel sampling /non-AR Model Parallel WaveNet, DiffWave

Quantization Continuous Waveform Modelling Parallel WaveNet, WaveGlow

Pre-computed features End-to-end training VITS

Limited receptive field Attention mechanism VITS, GST-Tacotron

Limited controllability Latent Space Representation VITS, GST-Tacotron

Multi-speaker scalability Few-shot/zero-shot adaptation VITS

Table 3: WaveNet Limitations, Solutions and Key Subsequent Models



References i

DeepMind.

Wavenet launches in the Google assistant, November 2017.

A. Gibiansky.

Wavenet and Tacotron aren’t TTS systems, 2023.
Personal blog post.

N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart,

F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu.

Efficient neural audio synthesis, 2018.

J. Kim, J. Kong, and J. Son.
Conditional variational autoencoder with adversarial learning for 
end-to-end text-to-speech, 2021.

R. Prenger, R. Valle, and B. Catanzaro.

Waveglow: A flow-based generative network for speech synthesis, 2018.



References ii

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: 
A generative model for raw audio. arXiv preprint 

arXiv:1609.03499, 2016.

A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,

G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande,

D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves,

H. King, T. Walters, D. Belov, and D. Hassabis.

Parallel wavenet: Fast high-fidelity speech synthesis.
In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on 

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 

3918–3926. PMLR, July 2018.

L. Weng.

Flow-based deep generative models.
lilianweng.github.io, 2018.


